Comparison between canonical vine copulas and a meta-Gaussian model for forecasting agricultural drought over China

نویسندگان

چکیده

Abstract. Agricultural drought mainly stems from reduced soil moisture and precipitation, it causes adverse impacts on the growth of crops vegetation, thereby affecting agricultural production food security. In order to develop mitigation measures, reliable forecasting is essential. this study, we developed an model based canonical vine copulas in three dimensions (3C-vine model) which antecedent meteorological persistence were utilized as predictors. Furthermore, a meta-Gaussian (MG) was selected reference evaluate forecast skill. The China August 2018 typical case spatial patterns 1- 3-month lead forecasts utilizing 3C-vine resembled corresponding observations, indicating good predictive ability model. performance metrics – Nash–Sutcliffe efficiency (NSE), coefficient determination (R2), root-mean-square error (RMSE) showed that outperformed MG with respect for diverse times. Moreover, exhibited excellent skill capturing extreme over different regions. This study may help guide early warning, mitigation, water resource scheduling.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Process Vine Copulas for Multivariate Dependence

Copulas allow to learn marginal distributions separately from the multivariate dependence structure (copula) that links them together into a density function. Vine factorizations ease the learning of high-dimensional copulas by constructing a hierarchy of conditional bivariate copulas. However, to simplify inference, it is common to assume that each of these conditional bivariate copulas is ind...

متن کامل

Model selection for discrete regular vine copulas

Abstract Discrete vine copulas, introduced by Panagiotelis et al. (2012), provide a flexible modeling framework for high-dimensional data and have significant computational advantages over competing methods. A vine-based multivariate probability mass function is constructed from bivariate copula building blocks and univariate marginal distributions. However, even for a moderate number of variab...

متن کامل

Bayesian Model Selection of Regular Vine Copulas

Regular vine copulas are a novel and very flexible class of dependence models. This paper presents a reversible jump MCMC strategy for Bayesian model selection and inference of regular vine copulas, which can select all levels of a regular vine copula simultaneously. This is a substantial improvement over existing frequentist and Bayesian strategies, which can only select in a sequential, level...

متن کامل

Selection of Vine Copulas

Vine copula models have proven themselves as a very flexible class of multivariate copula models with regard to symmetry and tail dependence for pairs of variables. The full specification of a vine model requires the choice of vine tree structure, copula families for each pair copula term and their corresponding parameters. In this survey we discuss the different approaches, both frequentist as...

متن کامل

the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran

آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hydrology and Earth System Sciences

سال: 2022

ISSN: ['1607-7938', '1027-5606']

DOI: https://doi.org/10.5194/hess-26-3847-2022